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Transport through a molecular device coupled to a vibrational mode is studied. By mapping it to the
Yu-Anderson model in the large contact broadening limit, the zero-bias electric and heat conductances are
evaluated nonperturbatively. These exhibit a step from their T=0 value to half of its value as T increases due
to the opening of the inelastic scattering channel. The spectral function exhibits the Franck-Condon suppressed
multiphonon steps. The Wiedemann-Franz law is satisfied at low and high temperatures, but is violated in
between. Relations to experiments are discussed.
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I. MOTIVATION

Molecular electronic devices are based on electron trans-
port through individual molecules and have been proposed
for many years as possible candidates for future nanoelec-
tronic circuit elements.1,2 They triggered intense research due
to the fundamental challenge of quantum transport in nano-
scale systems and by the possibility of tailoring molecular
scale structures.3,4 One of their most appealing features is the
importance of local Coulomb interaction between quasiparti-
cles and scattering off local vibrational modes �VMs�, which
are more pronounced due to the less effective screening
mechanisms at small length scales.

A wide range of characterization methods have been de-
veloped for collecting information about the microscopic
properties of the molecular junctions and probing its excited
states, including conductance histogram techniques;5 Cou-
lomb blockade,6,7 conductance fluctuation,8 shot noise,9 or
superconducting subgap structure10 measurements, operating
mainly at low temperatures. An especially important infor-
mation about molecular junctions is the study of VMs with
point-contact or inelastic electron tunneling spectroscopy,8,11

where the low-temperature zero-bias conductance of the de-
vice is perturbed by the excitation of molecular vibrations
with an appropriate bias voltage. Indeed, experiments on
single molecular devices including fullerenes,6,7 carbon
nanotubes,12 benzene,13 and simple molecules �H2,CO,H2O�
connecting metallic electrodes,8,11 have revealed the influ-
ence of vibrational degrees of freedom supplemented by the-
oretical simulations of the VMs.4,14–20

Whereas the above low-temperature techniques provide a
large amount of information about the ground-state proper-
ties of the device and small perturbations due to the excita-
tions of the inelastic degrees of freedom, any room-
temperature application requires the knowledge of the
temperature sensitivity of the device2 and the impact of the
strongly enhanced inelastic scattering processes should be
considered.3

Moreover, transport through local VMs parallels closely
to the Kondo effect.21 At low/high temperatures, the former
comprises a polaronic cloud made of a quantum/classical
oscillator, which corresponds to the Kondo singlet/free clas-

sical spin in the latter, and the crossover between low and
high T is followed by the universal temperature dependent
conductivity obtained by nonperturbative methods, in close
analogy with the Kondo effect.22 This can be of intrinsic
importance for magnetically robust Kondo-like behavior �or
charge Kondo effect�23 since VMs couple to the charge sec-
tor.

Therefore, in this work, we focus on the temperature-
dependent transport through molecular devices by studying
the electrical and thermal conductance of a model system
with nonperturbative analysis, valid for arbitrary electron-
vibron couplings.

II. MODEL AND ITS MAPPING

To model a molecular transport junction, we consider the
molecular Hamiltonian as

Hmol = gvQd+d +
P2

2m
+

m�0
2

2
Q2, �1�

describing a single electron level coupled to an Einstein pho-
non. The level is tunnel coupled to leads as

H0 = �
k

��k�ck
+ck + �

k

Vk�ck
+d + d+ck� + �0d+d , �2�

where Vk is the hybridization parameter. The contact broad-
ening is given by �=��0�Vk

2�FS. Let us consider symmetric
contacts with noninteracting quasiparticles, in which case it
suffices to consider a single effective contact22 with energy
dispersion ��k�=vFk and density of states �DOS� �0
=1 /2�vF. First, we diagonalize H0 and express the molecu-
lar Hamiltonian in terms of its eigenfunctions. This is
achieved by introducing24

d = �
k

	kak, ck = �
k�


k,k�ak�, �3�

and

	k
2 =

2vF

L

�

��k − �0�2 + �2 , �4�

where L is the size of the sample. The explicit form of 
k,k�
is irrelevant for our discussion.24 From now on, we restrict
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our attention to the cases when the broadening by the con-
tacts is such16 that the DOS of the contact and the device are
slowly varying on the scale of the phonon energy �0 and
temperature T. This is realized in the case �� �T ,�0� and
�� ��0�, when the junction is represented by a resonant level
model, thus 	k

�L� 	̄=�2vF� / ��0
2+�2� is k independent,

which are the basic conditions for the mapping to hold.
These are often satisfied under realistic conditions.16,17 Other
cases were studied in Ref. 15, 19, and 20. In terms of the
transformation in Eq. �3�, the total Hamiltonian H0+Hmol is
rewritten as

H = �
k

��k�ak
+ak + ḡQ+�0��0� +

P2

2m
+

m�0
2

2
Q2, �5�

where ḡ= 	̄2gv and �x�=�kexp�ikx�ak /�L. Equation �5� is
known as the Yu-Anderson model,25 describing conduction
electrons interacting with a local bosonic mode. The model is
solved by bosonizing the fermionic field21,26 as �x�
=exp	i�4���x�
 /�2�� and the resulting effective model of
one-dimensional coupled harmonic oscillators27 reads as

H = vF�
−�

�

dx	�x��x�
2 +
g

��
Q�x��0� +

P2

2m
+

m�0
2

2
Q2,

�6�

where g is the phase shift caused by ḡ, ��x� stems from the
bosonic representation of the fermion field. The VM softens
and the damped frequencies are given by21

�p� = − i� � ��0
2�1 − �/�2� − �2, �7�

where �2=��0
2 /4W��0�W, W is the bandwidth of the

conduction electrons, and �=��g�0�2 /2m for small g, and
the model becomes unstable for ���2. The explicit depen-
dence of � on gv cannot be determined by the bosonization
approach.21 The ���1��2�1−�2

2 /�0
2� region corresponds

to underdamped phonons, while the overdamped response
shows up at �1����2 with two distinct dampings.

III. CONDUCTANCES AT LOW AND HIGH
TEMPERATURES

The electric �G� and heat conductance ��� through the
molecular transport junction in the wideband limit are given
by22

�G

�
 =

�

h
� d�

� f

��
� e2

T�2Im Gd��� , �8�

where f is the Fermi function, and Gd��� is Green’s function
of the electron on the molecule. From Eq. �3�,

Gd��� = 	̄2G��� �9�

at x=0. This basic relation allows us to determine the prop-
erties of localized electron from the Yu-Anderson model. At
T=0, one can derive a Fermi-liquid relation for the Green’s
function of the  field19,28 at x=0 as

G�� = 0� = − i��0, �10�

which holds true even in the presence of VMs, i.e., the zero-
temperature zero-frequency density of states remains un-

changed. This occurs because at T=0, the incoming electrons
experience a frozen Fermi see and no bosons in the oscilla-
tor, thus no phase space for scattering. Identical results are
obtained for the Kondo model. This leads to the conductance
at T=0 as

G�T = 0� =
e2

h

�2

�2 + �0
2 , �11�

which ranges from perfect transmission �G�0�=e2 /h� for
��0��� to a decent suppression of the conductance to
�0.7–0.8e2 /h for ��0���. Equation �11� is expected to hold
for low transparency junctions, beyond the validity of our
mapping as well. The heat conductance satisfies

lim
T→0

��T�
T

= L0G�T = 0� , �12�

where L0= ��kB /e�2 /3 is the Lorentz number, thus the
Wiedemann-Franz law is fulfilled. At high temperatures
�T�max���p�� , ��p+�p−� /���, but still obeying to T��, the
T matrix for the  field reaches its universal value,
T=1 / i2��0. This halves the corresponding Green’s function
at x=0 in this high T region as

G��� = G
0 + G

0 TG
0 = −

i��0

2
�13�

with G
0 =−i��0, which determines the conductance at high

temperatures as

G�T � �0� =
G�T = 0�

2
. �14�

The phonon state is populated by many bosons at high tem-
peratures and every incoming electron scatters off them in-
elastically with increasing probability even in the weak-
coupling limit. The inelastic scattering cross-section reaches
its maximal value28 at this temperature range for arbitrary
electron-vibration coupling. The electrons dephase com-
pletely and can scatter forward and backward with equal
probability �=1 /2�. Consequently, the T matrix takes the
above universal value, and the conductance halves. Similar
conclusions about halving the spectral weight were reached
for scattering on a dynamical boundary condition.29

In the above high T limit, the heat conductance also sat-
isfies ��T��0� /T= �2

3e2 G�T��0�, and the Wiedemann-Franz
law holds. Therefore, both the electric and heat conductances
are expected to exhibit a step from their T=0 value to half of
its value with increasing temperatures, and the Wiedemann-
Franz law holds in the two limits. In between the two limits,
G and � follows a different temperature dependence: the heat
conductance drops faster with the temperature and their ratio
stays below the universal Lorentz number, hence, the
Wiedemann-Franz law is violated, as is shown in Fig. 1. The
minimum of their ratio occurs roughly at 3T=Re �p�, which
can be used as a rule of thumb to estimate the value of the
renormalized phonon frequency. We mention that by further
increasing the temperature to leave the T�� regime, Eq. �1�
practically decouples from the conduction electrons. In this
regime, the conductances exhibit a second step to zero.
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IV. GREEN’S FUNCTION FROM BOSONIZATION

To study the crossover between the high- and zero-
temperature limits, we use the exact result for the Yu-
Anderson model obtained from bosonization21,28 valid for
arbitrary temperatures, whose derivation is sketched below.
From Eq. �9�, the electron Green’s function on the molecule
is related to that of the  field. The real-time dependence of
the latter at the impurity site is obtained in the Yu-Anderson
model as

G�t� = − i
��t�

4 �
�,��=�

lim
x,y→0+

����x,t�,+���y,0���

= − i
��t�
8�

�
�,��=�

�exp	C�,���t�
 + exp	C��,��− t�
� ,

�15�

Where C�,���t�=limx,y→0+4�����x , t�����y ,0�− 	���x , t�2

+����y ,0�2
 /2�−ln��� and ��1 /W is the short distance
cutoff in the bosonized theory, � and �� denotes the sign of
the spatial coordinates x and y. The expectation value
C�,���t� at bosonic Matsubara frequencies can be evaluated
from the bosonized Hamiltonian, Eq. �6� as

C�,����m� = −
1

4��m�
+

�

2

	sgn��m� + �
	sgn��m� − ��

���m� + i�p+����m� + i�p−�

,

�16�

where �m=2m�T. The first term is responsible for the 1 / t
decay of the local fermionic propagator, while the second
one stems from the interaction of electrons with the oscilla-
tor. For �=��, this correction term vanishes. C�,���t� is
evaluated by analytically continuing the Matsubara frequen-

cies to real ones in Eq. �16�, which defines the spectral in-
tensity, and then following Ref. 30, we arrive to the desired
correlator. By defining the integral,

A�t� = �
−�

�

d�
− i exp�− i�t�
1 − exp�− �/T�

4�

�� − �p+��� − �p−�
, �17�

which follows the derivation of the position autocorrelator of
a harmonic oscillator coupled to a heat bath,27 and can be
evaluated in closed form using the hypergeometric functions,
the local retarded Green’s function at finite temperatures fol-
lows as

G��,T� = − i�
�0

2
�1 + Iph��,T� + exp	A�0�
� , �18�

where

Iph��,T� = �
0

�

dt
T exp�i�t�
sinh��Tt�

Im exp	A�t�
 , �19�

whose T=0 limit was analyzed in Ref. 28, giving Im G

=−i��0 at T=�=0. In the T� ��p+�p−� /� limit, Iph vanishes,
and the imaginary part of the propagator is Im G

=−i��0 /2, which is the desired result. Plugging Eq. �18� and
�9�, the conductances are evaluated from Eq. �8�, which are
shown in Fig. 1 for the full T range, which agree nicely with
the analysis of limiting cases. The inset shows the local spec-
tral function, the Franck-Condon steps14,15 arising from mul-
tivibron excitations are smooth due to the significant phonon
damping. Notice its explicit temperature dependence through
the phonon occupation number. The power of the exact so-
lution manifests itself in comparison with lowest-order per-
turbation theory �LOPT�,18,31 which neglects multiphonon
contributions �becoming dominant with temperature�, fre-
quency renormalization and lifetime effects, as is visualized
in Fig. 2. LOPT predicts

����
�0

= 1 −
��

�0
�coth��0

2T
� + �

s=�

sf�� + s�0� , �20�

which breaks down completely at T� ��0 ,�0
2 /�� even in the

weak-coupling regime, leading to the complete suppression
and even a sign change in G at high temperatures. The short-
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FIG. 1. �Color online� The electric and heat conductance �blue
solid and red dashed line� through a molecular junction and their
ratio �black dashed-dotted line� is shown as a function of the tem-
perature for �=0.8�2, W=10�0⇒�� /�0= �0.44− i0.06, the re-
sult of LOPT for the electric conductance �dotted magenta line� is
plotted for comparison. The high �T�Re �p�� and low �T
�Re �p�� temperature parts are universal. The inset shows the
evolution of the spectral function, ����=−Im G��� /� for
T /�0=0, 0.2, 0.4, 0.6, and 1.2 from top to bottom.
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FIG. 2. �Color online� The electric conductance from bosoniza-
tion �blue solid� and from LOPT �red dashed line� is shown in the
left panel as a function of the temperature for weak electron-
vibration coupling �=0.2�2, W=10�0⇒�� /�0= �0.89− i0.02,
signaling the limitations of the LOPT. The deviations grow with the
coupling. The right panel shows the real and imaginary part of the
Green’s function together with the LOPT result at T=0.
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coming of LOPT is even more compelling for stronger cou-
plings, as is shown in Fig. 1.

V. DISCUSSION

Experimentally, the renormalized vibration frequency is
determined from the current-voltage characteristics: the
dI /dV exhibits a step down in the large contact broadening
limit18 at eV=Re �p�, which sets the characteristic tempera-
ture range of the predicted conductance change. As a very
rough estimate, the T=0 conductance is �� f��→eV�, show-
ing the multiphonon structures with the Franck-Condon
suppression14 in the inset of Figs. 1 and 2. We mention that
low transmission junctions exhibit a step up in both the out-
of-equilibrium dI /dV and the equilibrium spectral function at
the excitation of the first VM. Temperature-dependent trans-
port is feasible on molecular devices,32 albeit large tempera-
ture variations are often accompanied by structural changes
or the mechanical deformation of the junction. Therefore, the
basic ingredients for the observation of the predicted conduc-
tance step are the extreme mechanical stability of the device
and a low enough frequency �Re �p�� of the VM. Fullerenes
like C60 were found6 to possess a center-of-mass oscillation
of 50 K, which can be lowered by considering heavier mem-
bers of their family �e.g., C140�. In this case, the oscillation
frequency can accurately be estimated based on the interac-
tions �electrostatic, van der Waals� between the molecule and
the electrodes. In addition, the intercage VMs of C140 start
from 25 K.7 Another promising configuration using a sus-
pended quantum dot phonon cavity,33 possesses a vibrational
frequency of 0.8 K. The actual temperature where the
conductance halves, is estimated from Figs. 1 and 2 as

T��2–20��Re �p� �the frequency at which a structure
shows up in dI /dV�, depending on the strength of the
electron-vibron coupling.

Although the electron-vibration coupling �gv� is hardly
controllable, the parameters � and �0 can be tuned by vary-
ing the contact DOS or by gate electrode,34 which can drive
the system toward stronger effective couplings. This de-
creases the temperature window for the conductance step.
Given a low vibrational frequency, condition �� �T ,�0� is
easily met, therefore we expect that a dedicated setup allows
the observation of the universal conductance steps, while
low-temperature dI /dV measurements can reveal the mul-
tiphonon structures in the local spectral function on the mol-
ecule. Even for molecular devices, where the direct tempera-
ture dependence cannot be traced, our results demonstrate
the role of multiphonon scattering processes in the room-
temperature conductance of the junction. Our results apply to
the electric and heat transport of a metal with dilute concen-
tration of heavy nonmagnetic impurities �with a low vibra-
tional frequency� as well.

In summary, we studied nonperturbatively the electric and
heat conductance through a single level coupled to a VM by
mapping it to the Yu-Anderson model. With increasing tem-
perature, the conductances drop to half of their T=0 value
due to increasing inelastic scattering in the large contact
broadening limit. We argue that its experimental observation
is within reach in stable contacts with a low VM.
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